

[image:]
Microsoft Programming in C# Boot Camp Courses
Boot camp Title – MCP: Programming in C# (1 Cert)
Number of Days – 5
Number of Exams – 1
Number of Certifications – 1
Cost - $4995.00

Certifications:
[bookmark: _GoBack]MCP: Programming in C#

Exams:
70-483: Software Development Fundamentals
Course Description:
The MCP Programming in C# certification boot camp is a 5 day comprehensive deep dive into programming covering topics such as implementing, creating and programming. This instructor led face to face training camp will teach you the skills needed to support a programming environment.

Class Objectives (Following information customized from Microsoft Learning Test Objectives)

Module 1: Review of C# Syntax
This module reviews the core syntax and features of the C# programming language. It also provides an introduction to the Visual Studio 2012 debugger.
Lessons
· Overview of Writing Applications using C#
· Datatypes, Operators, and Expressions
· C# Programming Language Constructs
Lab : Developing the Class Enrolment Application
After completing this module, students will be able to:
· Describe the architecture of .NET Framework applications and use the features that Visual Studio 2012 and C# provide to support .NET Framework development.
· Use the basic data types, operators, and expressions provided by C#.
· Use standard C# programming constructs.
Module 2: Creating Methods, Handling Exceptions, and Monitoring Applications
This module explains how to create and call methods, catch and handle exceptions. This module also describes the monitoring requirements of large-scale applications.
Lessons
· Creating and Invoking Methods
· Creating Overloaded Methods and Using Optional and Output Parameters
· Handling Exceptions
· Monitoring Applications
Lab : Extending the Class Enrolment Application Functionality
After completing this module, students will be able to:
· Create and invoke methods, pass parameters to methods, and return values from methods.
· Create overloaded methods, and use optional parameters and output parameters.
· Catch and handle exceptions and write information to the event log.
· Explain the requirement for implementing logging, tracing, and profiling when building large-scale applications.
Module 3: Developing the Code for a Graphical Application
This module describes how to implement the basic structure and essential elements of a typical desktop application, including using structures and enumerations, collections, and events.
Lessons
· Implementing Structs and Enums
· Organizing Data into Collections
· Handling Events
Lab : Writing the Code for the Grades Prototype Application
After completing this module, students will be able to:
· Define and use structures and enumerations.
· Create and use simple collections for storing data in-memory.
· Create, subscribe to, and raise events.
Module 4: Creating Classes and Implementing Type-safe Collections
This module explains how to create classes, define and implement interfaces, and create and use generic collections. This module also describes the differences between value types and reference types in C#.
Lessons
· Creating Classes
· Defining and Implementing Interfaces
· Implementing Type-safe Collections
Lab : Adding Data Validation and Type-safety to the Grades Application
After completing this module, students will be able to:
· Create and use custom classes.
· Define and implement custom interfaces.
· Use generics to implement type-safe collections.
Module 5: Creating a Class Hierarchy by Using Inheritance
This module explains how to use inheritance to create a class hierarchy and extend a .NET Framework class. This module also describes how to create generic classes and define extension methods.
Lessons
· Creating Class Hierarchies
· Extending .NET Framework Classes
· Creating Generic Types
Lab : Refactoring Common Functionality into the User Class
After completing this module, students will be able to:
· Define abstract classes and inherit from base classes to create a class hierarchy.
· Inherit from .NET Framework classes and use extension methods to add custom functionality to the inherited class.
· Create generic classes and methods.
Module 6: Reading and Writing Local Data
This module explains how to read and write data by using file input/output (I/O) and streams, and how to serialize and deserialize data in different formats.
Lessons
· Reading and Writing Files
· Serializing and Deserializing Data
· Performing I/O Using Streams
Lab : Generating the Grades Report
After completing this module, students will be able to:
· Read and write data to and from the file system by using file I/O.
· Convert data into a format that can be written to or read from a file or other data source.
· Use streams to send and receive data to or from a file or other data source.
Module 7: Accessing a Database
This module explains how to create and use an entity data model for accessing a database, and how to use LINQ to query and update data.
Lessons
· Creating and Using Entity Data Models
· Querying Data by Using LINQ
· Updating Data by Using LINQ
Lab : Retrieving and Modifying Grade Data
After completing this module, students will be able to:
· Create an entity data model, describe the key classes contained in the model, and customize the generated code.
· Use LINQ to query and work with data.
· Use LINQ to insert, update, and delete data.
Module 8: Accessing Remote Data
This module explains how to use the types in the System.Net namespace, and WCF Data Services, to query and modify remote data.
Lessons
· Accessing Data Across the Web
· Accessing Data in the Cloud
Lab : Retrieving and Modifying Grade Data in the Cloud
After completing this module, students will be able to:
· Use the classes in the System.Net namespace to send and receive data across the Web.
· Create and use a WCF Data Service to access data in the cloud.
Module 9: Designing the User Interface for a Graphical Application
This module explains how to build and style a graphical user interface by using XAML. This module also describes how to display data in a user interface by using data binding.
Lessons
· Using XAML to Design a User Interface
· Binding Controls to Data
· Styling a User Interface
Lab : Customizing Student Photographs and Styling the Application
After completing this module, students will be able to:
· Define XAML views and controls to design a simple graphical user interface.
· Use XAML data binding techniques to bind XAML elements to a data source and display data.
· Add styling and dynamic transformations to a XAML user interface.
Module 10: Improving Application Performance and Responsiveness
This module explains how to improve the throughput and response time of applications by using tasks and asynchronous operations.
Lessons
· Implementing Multitasking by using Tasks and Lambda Expressions
· Performing Operations Asynchronously
· Synchronizing Concurrent Access to Data
Lab : Improving the Responsiveness and Performance of the Application
After completing this module, students will be able to:
· Create tasks and lambda expressions to implement multitasking.
· Define and use asynchronous methods to improve application responsiveness.
· Coordinate concurrent access to data shared across multiple tasks by using synchronous primitives and concurrent collections.
Module 11: Integrating with Unmanaged Code
This module explains how to integrate unmanaged libraries and dynamic components into a C# application. This module also describes how to control the lifetime of unmanaged resources.
Lessons
· Creating and Using Dynamic Objects
· Managing the Lifetime of Objects and Controlling Unmanaged Resources
Lab : Upgrading the Grades Report
After completing this module, students will be able to:
· Integrate unmanaged code into a C# application by using the Dynamic Language Runtime.
· Control the lifetime of unmanaged resources and ensure that they are disposed properly.
Module 12: Creating Reusable Types and Assemblies
This module explains how to examine the metadata of types by using reflection, create and use custom attributes, generate managed code at runtime, and manage different versions of assemblies.
Lessons
· Examining Object Metadata
· Creating and Using Custom Attributes
· Generating Managed Code
· Versioning, Signing and Deploying Assemblies
Lab : Specifying the Data to Include in the Grades Report
After completing this module, students will be able to:
· Examine the metadata of objects at runtime by using reflection.
· Create and use custom attribute class.
· Generate managed code at runtime by using CodeDOM.
· Manage different versions of an assembly and deploy an assembly to the Global Assembly Cache.
Module 13: Encrypting and Decrypting Data
This module explains how to encrypt and decrypt data by using symmetric and asymmetric encryption.
Lessons
· Implementing Symmetric Encryption
· Implementing Asymmetric Encryption
Lab : Encrypting and Decrypting Grades Reports
After completing this module, students will be able to:
· Perform symmetric encryption by using the classes in the System.Security namespace.
· Perform asymmetric encryption by using the classes in the System.Security namespace.

image1.jpeg
CERTIFICATION

CAMPS

@

image2.jpeg
@ ‘ CERTIFICATION
CAMPS

